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Abstract. Recently it was demonstrated that the rotational and vibrational spectra of quantum rings
containing few electrons can be described quantitatively by an effective spin-Hamiltonian combined with
rigid center-of-mass rotation and internal vibrations of localized electrons. We use this model Hamiltonian
to study the quantum rings at finite temperatures and in presence of a nonzero magnetic field. Total spin,
angular momentum and pair correlation show similar phase diagram which can be understood with help
of the rotational spectrum of the ring.

PACS. 73.21.Hb Quantum wires – 73.21.La Quantum dots – 71.10.Pm Fermions in reduced dimensions

1 Introduction

Nowadays very sophisticated techniques allows one to
construct a large variety semiconductor heterostructures,
which have turned out to be interesting both theoreti-
cally and practically and are often referred as future com-
ponents of nanoelectronics. One class of structures form
quantum dots, or artificial atoms, which have character-
istic discrete energy spectrum like atoms (for a review
see [1]). The principle of a quantum dot is to confine a
bunch of conduction electrons of a semiconductor het-
erostructure in a small region of space. Usually the elec-
trons are confined from a two-dimensional (2D) gas. Simi-
larly, in a quantum ring the electrons are confined to move
in a ring-shaped, circularly symmetric, potential. Lorke
et al. [2] and Fuhrer et al. [3] have shown that rings con-
taining only a few electrons can be studied experimentally.

A ring can be considered to be cut out from a strictly
2D electron gas. However, in the 2D plane the ring will
have a finite thickness, being quasi-one-dimensional. The-
oretical interest in quantum rings has been concentrated
on the possibility of persistent currents [4–10]. Most of
the work is based on studying strictly 1D systems using
Hubbard-type model Hamiltonians (for a review on 1D
systems see Ref. [11]). While these strictly 1D-systems
are exactly solvable in some limiting cases and have re-
vealed interesting results for strongly correlated system
(e.g. Luttinger liquid and charge-spin separation, for a re-
view see Ref. [12]), it is not easy to draw their relation to
a realistic quansi-1D ring with long-range Coulomb inter-
actions.

a e-mail: Matti.Manninen@phys.jyu.fi

The pioneering work on ab initio electronic structure
calculations for quasi-1D rings with a few electrons were
done by Chakraborty et al. [13,14] using configuration
interaction (CI) technique. The ‘exact’ many-body wave
function of the CI calculation has a circular symmetry
and the internal structure is only seen in correlation func-
tions, which reveal the tendency to antiferromagnetic or-
dering of the electron spins, in agreement with the results
of the Hubbard models. The formation of an antiferro-
magnetic chain of localized electrons is seen more clearly
from the results of the the density functional mean field
theory which shows the internal symmetry of the many-
body state [15]. In a many-body formalism the internal
antiferromagnetic order has been observed in studying
the pair-correlation function [16] and the excitation spec-
trum [17,18]. Also in the density functional theory the
excitation spectrum indicates the existence of antiferro-
magnetic spin density wave [19]. The study of the excita-
tion spectrum has shown that narrow rings can be accu-
rately described by mapping the exact Hamiltonian to a
model of localized electrons [18]. Similar idea have been
used earlier for noncircular quantum dots by Jefferson and
Häusler [20].

In this paper we will study the quantum mechanics and
statistical physics of small quantum rings using the model
Hamiltonian suggested earlier [18]. We extend the model
for finite magnetic fields and find an interesting variation
of the spin-state as a function of the magnetic field. We
show that the parameters of the model Hamiltonian are
smooth functions of the thickness and radius of the ring.
Consequently, the qualitative properties of the ring are
insensitive to the parameters of the ring. Due to the exact
solution of the model Hamiltonian the statistical physics
of the rings can be solved.
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The organization of the paper is as follows. In Section 2
we will describe the model Hamiltonian and its relation
to the exact Hamiltonian, in Section 3 we present results
for zero external magnetic field. In Section 4 the rings in
the presence of a magnetic field are studied and Section 5
concludes the paper.

2 Theoretical model

The model potential for a quantum ring can be considered
to be the parabolic V (r) = 1

2m
∗ω0(r−R)2, where R is the

radius of the ring. The parameter ω0 describes physically
the strength of the confining radial potential: The larger
ω0, the more strictly electrons are confined to the distance
R and deviations in the radial direction are small. For
a given number of electrons the ring becomes more one-
dimensional if either ω0 or R or both are increased. The
normal many-body Hamiltonian if the quantum ring is

H =
N∑

i=1

[
− ~

2

2m∗∇2
i + V (ri)

]
+

N∑
i<j

e2

4πεε0
1

| ri − rj | ·

(1)

The eigenstates of (1) were calculated using the
configuration-interaction (CI) method in reference [18].
We have extended these calculations for several values of
R and ω0. In the case of a relative narrow ring we observed
earlier [18] that the energy spectrum could be accurately
described with a model Hamiltonian consisting of antifer-
romagnetic Heisenberg term combined with free rotations
of the ring and vibrational states of the localized elec-
trons. The effective Hamiltonian of the system can then
be written as

Heff = J

N∑
i,j

Si · Sj +
~

2

2I
M2 +

∑
a

~ωana, (2)

where the first term is the normal Heisenberg spin-
Hamiltonian and the second term describes the rota-
tion of the molecule with moment of inertia I. Note
that the rotation axis is fixed. The last term describes
the energies of the vibrational excitations of the sys-
tem, ~ωa being the energy of the vibrational mode
a and na the number of quanta associated with that
specific vibrational mode. In a narrow ring the vi-
brational states are clearly separated from the rota-
tional states like in molecules. However, in the case
of very shallow rings (and in quantum dots [22]) the
vibrational levels are close to the rotational levels and
the model Hamiltonian becomes less accurate. Note that
the Heisenberg model is a limiting case of many mod-
els of strongly correlated 1D-systems [10,11]. Here it can
be understood as coming from the tight-binding coupling
(see e.g. Ref. [21] between the electron localized in ‘pocket
states’ [20]).

The eigenstates of the model Hamiltonian (2) can be
solved as follows. First, solving the pure Heisenberg model
for N localized electrons in a ring is straightforward. The

Table 1. Symmetry properties of all the eigenstates of the
Heisenberg model for a ring of six electrons. Li shows the an-
gular momenta which the state can get in vibrational mode i
(i = 0 is the vibrational ground state). In case of degenerate
states Ci shows the trace of the rotation operation.

Energy Spin C2 C3 C6 σd σv L0 L1 L2 L3

−2.803 0 1 1 1 1 1 0 1,5 2,4 3
−2.118 1 −1 1 −1 −1 1 3 2,4 1,5 0
−1.500 0 −1 1 −1 1 −1 3 2,4 1,5 0
−1.281 1 −2 −1 1 0 0 1,5 0,2,4 1,3,5 2,4
−1.000 1 2 −1 −1 0 0 2,4 1,3,5 0,2,4 1,5
−0.500 2 1 1 1 1 1 0 1,5 2,4 3
−0.500 0 2 −1 −1 0 0 2,4 1,3,5 0,2,4 1,5

0.000 2 −2 −1 1 0 0 1,5 0,2,4 1,3,5 2,4
0.118 1 −1 1 −1 −1 1 3 2,4 1,5 0
0.500 1 1 1 1 −1 −1 0 1,5 2,4 3
0.781 1 −2 −1 1 0 0 1,5 0,2,4 1,3,5 2,4
0.803 0 1 1 1 1 1 0 1,5 2,4 3
1.000 2 2 −1 −1 0 0 2,4 1,3,5 0,2,4 1,5
1.500 3 −1 1 −1 −1 1 3 2,4 1,5 0

basis consists of 2N Fock states |φi〉 = |σ1σ2 · · ·σN 〉 (N lo-
calized spin- 1

2 electrons have 2N possible combinations of
their spins, σi =↑, ↓). By direct diagonalization the solved
eigenstates can be chosen to be eigenstates of the Heisen-
berg Hamiltonian, S2 and Sz .

Obtaining the angular momenta of these states is not
that simple, but one can determine them in the follow-
ing way. The general rotation operator acting on states
is of the form eiθM, where M is the angular momen-
tum operator and θ is the rotation angle (with direction).
We define the rotation operator R acting on basis states
|φi〉 as R|σ1σ2 · · ·σN 〉 = |σNσ1 · · ·σN−1〉, so that R is
equivalent to a rotation of an angle θ = 2π/N . Because
|Ψj〉 =

∑
ci|φi〉, so eiθM |Ψj〉 =

∑
ciR

n|φi〉 =
∑
c′i|φi〉,

when θ = n2π/N . If |Ψj〉 is nondegenerate eigenstate of
M , the right hand side becomes ei 2πn

N M |Ψj〉. In the case
of degenerate states (state |Ψj〉 is not an eigenstate of R)
one has to inspect the trace of R, which will give us the
possibility to determine the angular momentum with help
of the character table of the CNv group. Following the pre-
ceding method M gets the values 0 . . .N−1, but the spec-
trum can be obtained for all possible angular momenta.
Because eiθM = eiθ(M+ 2πn

θ ) and θ = k2π/N , states with
angular momentumM ′ = M+nN =, n = ±1,±2 . . . have
similar symmetry properties. Table 1 shows explicitly the
symmetry properties of a ring for six electrons.

In reference [18] it was shown that the exact rotational
spectrum calculated with the CI method consists of sepa-
rated vibrational bands each of which having spin struc-
ture consistent with the Heisenberg model. The rotational
energy increases simply as M2. Figure 1 shows two exam-
ples of the energy spectra of the model Hamiltonian for six
electrons together with the spectrum of the noninteract-
ing electrons in an infinitely narrow ring. (For comparison
of the spectra of the model Hamiltonian to those of the
true Hamiltonian we refer to our earlier paper [18].) In
the lowest panel the separation of the spectrum to rota-
tional and vibrational states is clearly seen. Using the term
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Fig. 1. Energy spectra of six-electron rings for the angular
momenta 0 · · · 6. The numbers above the energy levels indicate
the spin. (a) noninteracting electrons, (b) model Hamiltonian
with IJ = 14, (c) model Hamiltonian with IJ = 0.73. The
energy scales are in arbitrary units.

used in nuclear physics we call the lowest energy state for
each angular momentum the yrast state, and the lowest
vibrational band as yrast band. In the case of six elec-
trons there are only three vibrational modes with energy
relations ω1 : ω2 : ω3 = 1 :

√
7/3 :

√
3. The higher vi-

brational states can be constructed with the help of the
yrast band by group-theoretical methods. Table 1 shows
how these vibrational states are constructed for the case
of six electrons.

The parameters of the model Hamiltonian can be fitted
to the results of the exact Hamiltonian. However, knowing
that the model Hamiltonian describes narrow quantum
rings well, it is interesting to study its properties more
systematically in the parameter space determined by J , I,
and ωa at zero and at finite temperatures. Since one of the
parameters determines the energy scale and in most cases
the vibrational states do not matter (as will be shown
below) we have in fact only one parameters J/(1/I) = IJ .

The accuracy of the model Hamiltonian depends on
the one-dimensionality and on the radius of the ring. The

Table 2. Ratio of the energy differences ∆6 and ∆0 (defined
in text) calculated with exact diagonalization method. I/I0 is
the ratio of the exact moment of inertia to that of a rigid ring
of classical electrons.

rs Cf ∆6/∆0 I/I0

2 2 0.72 2.39
2 4 0.75 1.45
2 10 0.88 1.03
2 25 0.97 0.98
3 10 0.87 1.09
4 10 0.87 1.14
4 25 0.97 1.00
6 25 0.95 1.02

one-dimensionality can be expressed in terms of a param-
eter CF [22] which is essentially the excitation energy of
a radial mode. The ring radius can be related to the one-
dimensional density parameter rs. The resulting relations
are R = Nrs/π and ω0 = CF ~

2π2/(32mr2s). The Heisen-
berg coupling energy of the model Hamiltonian can be fit-
ted to the splitting of the lowest band (vibrational ground
state) at a given angular momentum. For example, for six
electrons J can be determined from the energy difference
of the lowest two S = 0, M = 0 states, see Figure 1. In the
Heisenberg model this energy difference is 3.606J as seen
from Table 1. Similarly, the moment of inertia can be fitted
by requiring that the energy difference between the lowest
M = 6 and M = 0 states is N/2I. For narrow rings the
fitted moment of inertia is very close to the classical esti-
mate NmR2. The accuracy of the model Hamiltonian can
then be estimated by studying how well the other energy
states are described. The model Hamiltonian predicts that
the spectrum for M = 0 is identical to that for M = 6.
In Table 2 we compare the energy difference of the lowest
two S = 0 states for M = 6 (denoted by ∆6) to that for
M = 0 (∆0). Table 2 also gives the ratio of the moment
of inertia determined from the exact spectrum (I) to the
classical estimate (I0 = NmR2). Note however, that the
moment of inertia can also be fitted to the exact results.
It should be emphasised that using only one parameter all
the 23 excited states of the yrast band with their correct
spin assignment (shown in Fig. 1b) are reproduced with
the model Hamiltonian with the same or better accuracy
than the example of the energy ratio shown in Table 2. In
the limit of a strictly 1D case (ω0 → ∞) the model Hamil-
tonian results (numerically) exactly the same spectrum as
the true Hamiltonian.

Within the range 2 ≤ rs ≤ 6 and 2 ≤ CF ≤ 25
the product IJ can be accurately described (for six elec-
trons) as

IJ = [0.273 + 0.004(r2sCF ) + 2.24 × 10−6(r2sCF )2]−1.
(3)

In the limit of rs → 0 or CF → 0 this fit will give IJ =
3.64 which is surprisingly close to the similar fit to the
noninteracting spectrum, which would give IJ = 5.

The effect of a magnetic field B perpendicular to the
plane of the quantum ring can be taken into account
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by adding the following terms in the model Hamiltonian
(these can be obtained with the normal minimal substitu-
tion)

∆HB =
e2

8mc2
B2R2N +

~e

2mc
BLz + g0µBBSZ . (4)

By considering the magnetic field as a flux penetrating the
ring φ = πR2B and approximating the moment of inertia
by I = NmR2, we get in atomic units

H = − J

N∑
i,j

Si · Sj (5)

+
1
R2

[
1

2N
M2 +

N

2

(
φ

φ0

)2

+
(
φ

φ0

)
(M + gSz)

]
,

(6)

where φ0 is the flux quantum. In addition to the flux φ we
have (by neglecting the vibrations) only two parameters in
the Hamiltonian (6), the Heisenberg coupling J (or R2J)
and the effective Lande factor g.

In a quantum ring the magnetic flux can be con-
structed using a homogeneous magnetic field, in which
case the electron spins also couple with the field (g = g0),
or the field can be restricted inside the ring, in which case
the electrons are in a zero magnetic field (g = 0). Also a
partial penetration of the field in the ring region can be
described with nonzero g-values. In describing real quan-
tum rings in semiconductors, our parameter g depend thus
on the effective Lande factor of the material in question
and on the relative strength of the magnetic field on the
ring perimeter as compared in the center.

3 Results at zero field

3.1 Hund’s first rule

In quantum dots the electronic structure follows the
Hund’s first rule, that is the spin of the ground state of an
open shell is at maximum [23,24]. The same is true also
for quantum rings, although in this case the maximum
spin can be only S = 1 since each shell consists of only
two states corresponding to single particle angular mo-
menta m and −m. The total spin of the ground state of
the Heisenberg Hamiltonian is S = 0 for all even number
of electrons. However, combined with the rotational states
the ground state of the Heisenberg model is not necessar-
ily the ground state of the total Hamiltonian. The lowest
S = 0 state belongs to the M = 0 ground state of the
rigid rotation only if N = 2(2k + 1), where k is an in-
teger. In this case the total ground state has S = 0. On
the other hand, in the case N = 4k the lowest S = 0
state of the Heisenberg Hamiltonian belongs to the an-
gular momentum M = N/2. Due to the M2 term in the
Hamiltonian the total energy of this state will be pushed
higher than the S = 1 state belonging to M = 0 rotational
state. This means that the model Hamiltonian results the
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Fig. 2. (a) Energy levels for different angular momentum val-
ues (M) in units of J . (b) The pair correlation function at
different nearest neighbours (denoted by numbers) as a func-
tion of the temperature. (c) The specific heat as a function of
the temperature. The ring has six electrons, vibrational states
are neglected and IJ = 6.

Hund’s first rule. (Strictly speaking this requires that IJ
is small enough, but, this condition is always valid when-
ever the model Hamiltonian is a good approximation to
the real system.)

3.2 Heat capacity

At finite temperatures the excited states will be popu-
lated according to the probabilities determined by the
Boltzmann factor. At high temperatures the total spin
(the quantum mechanical quantity being S2) approaches
to the average determined by the Heisenberg Hamiltonian,
since all states will be populated with equal probability.

The total energy has an expected monotonic behaviour
with increasing temperature, but the heat capacity shows
a sharp peak at low temperatures due to the discrete-
ness of the energy levels. This is demonstrated in Figure 2
where we show the positions of the energy levels and the
heat capacity. Note that the heat capacity peak appears
at a much lower temperature than the energy of the first
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Table 3. Pair correlation function for the ground state of the
six electron ring. For comparison the results of noninteracting
tight binding model are shown.

neighbour g↑↑ g↑↓ gTB
↑↑ gTB

↑↓
1 0.189 0.810 0.278 0.500

2 0.638 0.362 0.500 0.500

3 0.346 0.654 0.444 0.500

excited state. This, as well as the sharpness of the peak, is
caused by the large degeneracy of the first excited state.
At higher temperatures the population of the new states
increases smoothly and the heat capacity decrease to a
constant value. The effect of the vibrational states is only
marginal for the for the heat capacity at low temperatures.
The reason is that the vibrational states are well sepa-
rated from the lowest rotational band and a large number
of the rotational levels is already populated before the vi-
brational states start to get marked population.

3.3 Pair correlation function

A natural way to analyse the internal structure of a many-
body system is to study the pair correlation function.
In the model Hamiltonian the correlation at zero tem-
perature (ground state) arises solely from the Heisenberg
model. We define the spin-pair-correlation function as fol-
lows:

gσσ′(d) = 〈Ψj |ni,σni+d,σ′ |Ψj〉, (7)

where ni,σ is the number operator for an electron with
spin σ at Heisenberg chain site i. So g↑↑(d) describes the
probability for the electron at the site i to have an electron
with parallel spin at dth nearest-neighbor site (the spin of
the electron at the site i can be either ↑ or ↓) and similarly
for opposite spins g↑↓(d). The definition is independent of i
by symmetry.

Table 3 gives as an example the pair correlation func-
tions for the six-electron ring. For comparison the corre-
lations for noninteracting electrons in tight binding (TB)
model are shown. Incidentally, the correlations of the TB
model agree with the values of the pair-correlation func-
tion of free electrons in a narrow ring, calculated at angles
corresponding to the localized electrons in the TB model.
Naturally, the Heisenberg model has a much stronger cor-
relation. In fact the result of the Heisenberg model is in
good agreement with the pair-correlation calculated from
the exact Hamiltonian in the limit of a narrow ring. Nev-
ertheless, the correlation decreases fast with the distance
making the pair correlation function not a clear signature
of the particle localization as discussed in reference [18]. In
the infinite one-dimensional antiferromagnetic Heisenberg
model the pair correlation decreases as 1/d, d being the
distance between the electrons [25].

Figure 2 shows an example of the temperature de-
pendence of g↑↑(d) for different d in the case of a six

electron ring. Figure 2 shows that the antiferromag-
netic configuration vanishes essentially at temperatures
above the heat capacity peak, i.e. at temperatures smaller
than the energy of the fist excited state. This ‘order-
disorder-transition’ is similar to that observed by Bor-
rmann et al. [16]. However, Figure 2 shows this behaviour
more clearly, because the model Hamiltonian allows us to
go the the zero-temperature limit which was not possible
using the diffusion Monte Carlo method of reference [16].
Especially, one should note that the strong correlation
coming from the ground state can only be seen at very low
temperatures and requires that the Monte Carlo method
is able to describe the ground state essentially exactly.
In the limit T → ∞ the pair-correlation functions ap-
proaches to 1

2 for all nearest-neighbors, so all spins are
oriented at random. Again, the vibrational modes exhibit
almost no contribution whatsoever to the pair-correlation
functions even with small ω1. The reason is that when
the vibrational states start to be populated all the pos-
sible Heisenberg states of the lowest rotational band are
already nearly evenly populated and the correlation has
disappeared.

4 Rings at finite magnetic field

A finite magnetic field changes the angular momentum at
which the minimum energy is reached and, in the case
of nonzero g, splits the degeneracy of different Sz states.
Figure 3a shows the phase diagram of Sz for six electrons
at zero temperature as a function of magnetic field and g.
In the limit of a large field (and nonzero g) the spin is
naturally 3, because the energy is minimized by aligning
all the spins parallel to the field. On the other hand in the
limit of small field, irrespective of g, the spin has the same
value as without the magnetic field. As discussed above,
for even number of particles this is either 0 or 1 and for
odd number of electrons it is 1/2. Between these extreme
limits the spin exhibits interesting periodic behaviour as a
function of magnetic flux. This is a result of the periodicity
of the yrast spectrum (Fig. 1) as a function of M . We can
clarify this by writing the relevant terms in (6) as

r−2
0

[
1

2N

(
M +

φ

φ0
N

)2

+
φ

φ0
g0Sz

]
.

Minimizing the energy with specific φ means that M ∼
−Nφ/φ0 (M has only discrete values). By increasing φ by
one flux quantum M decreases by N , giving ultimately
the periodicity of φ0. Depending on J the periodicity can
be also φ0/N or φ0/2. The periodicity φ0/N results if J
is so small that all the yrast states for a given M are al-
most degenerate and, consequently, the energy increases
monotonously as a function of M . The periodicity φ0/2
is seen, when J becomes so large that the yrast states
with L = kN and L = kN + N/2 are lower in energy
than the neighbouring states, see Fig. 1). This behavior is
not restricted to rings with six electrons, but is a general
property of quantum rings as demonstrated in Figure 3d,
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Fig. 3. Total spin (a) and total angular momentum (b) as a function of the magnetic flux and effective Lande factor for a six
electron ring (IJ = 6). Panel (c) shows the spin at a temperature of 0.5J . Panel (d) shows the spin for an eight electron ring.

showing the phase diagram for eight electrons. These dif-
ferent periodicities have been observed also using Hubbard
models for the quantum ring [10].

The periodicity is shown also in Figure 3b, which rep-
resents similar phase diagram for the angular momentum
M as a function of magnetic flux and Landé g-factor. Be-
cause the state with S = 3 has only one angular momen-
tum value in the Heisenberg model (see Tab. 1), Figure 3b
shows only angular momentum values 3, 9, . . . for large g
where the coupling to the spin is strong. When g decreases
also other angular momentum values start to exist, cor-
responding to different spin-values. Notice the resulting
similarity of the phase diagrams of S and M in Figures 3a
and b.

Figures 3a and d show that the reduction of spin from
the maximum value is most easily obtained when the ring
is penetrated with an integer number of flux quanta. In
this connection it is interesting to note that Maksym and
Chakraborty [26] observed similar reduction of the spin
from the maximum value at integer numbers of flux quanta
for a four electron quantum dot using an exact CI calcu-
lation for the Hamiltonian (1) with R = 0. In the case
of four electrons the yrast spectrum of a dot is very sim-
ilar to that of a ring [22] indicating electron localization.
Consequently, the model Hamiltonian gives a simple ex-
planation to this phenomenon observed by Maksym and
Chakraborty. The maximum spin belongs to a different an-
gular momentum than the low-spin state and the change
of the flux makes the angular momentum to jump with the
period N/2, until the field is so large that only states with
angular momenta with 2, 6, 10, 14 etc. (for 4 electrons)
appear as ground states.

Figure 3c shows the same phase diagram as Figure 3a,
but now at the temperature kBT = 0.5J . The periodicity
vanishes above temperatures of the order of kBT ∼ J . At
zero temperature the vibrational states have no meaning

at all, but the remarkable fact is that even at finite tem-
peratures the vibrational states do not have any effect on
the phase diagrams, not even even ω1 as small as 2J so
that there is no gap between different vibrational bands.

The pair-correlation functions have similar phase dia-
gram as the spin and orbital angular momentum do. For
example, the pair-correlation g↑↑(d) = 1 for all d, when
the spin is three. Decreasing the spin the probability to
have opposite spins as nearest neighbors increases with
the same steps as in the phase diagram for spins.

Let us now consider noninteracting electrons in an
infinitely narrow ring. The one-particle states in a one-
dimensional ring can be solved easily with periodic bound-
ary conditions. One obtains ψ(r) ∝ eimφ, and the en-
ergy Em ∝ m2, where m is the angular momentum
for the single-particle states. By setting N electrons in
these states according to the Pauli principle, we obtain
for the many-particle states M =

∑
i mi, E =

∑
i εi

and Sz =
∑

i sz,i. The many-body spectrum of noninter-
acting electrons is shown in Figure 1. The yrast states
increase roughly as M2. The noninteracting spectrum
differs in many ways from the spectra of the model (or
exact) Hamiltonian shown in Figure 1. For example, it has
no different (vibrational) bands but rather a ‘continuum’
of states above the yrast states. Nevertheless, the nonin-
teracting spectrum has a couple of important connection
points with the exact spectrum. As discussed above, the
ground state for N = 4k + 2 has M = 0 and S = 0,
while for N = 4k the M = 0 state is degenerate with
the M = N/2 state, the former having spin 0 or 1 while
the latter has spin 0. Moreover, the lowest S = N/2 state
corresponds to M = N/2 in agreement with the results
of the model (or exact) Hamiltonian. Consequently, the
dependence of the ground state spin as function of the
magnetic field and the g parameter is even quantitatively
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similar to that of the model Hamiltonian with a suitably
chosen coupling constant IJ .

In the limit of the extremely narrow ring, the model
Hamiltonian describes not only the lowest rotational band
exactly, but also all the vibrational states exactly (without
any further parameters) [18]. It seems evident that in this
strongly correlated limit the model Hamiltonian becomes
an exact description of the true many-body Hamiltonian
of interacting electrons. On the other hand many of the re-
sults of the model/true Hamiltonian are qualitatively sim-
ilar to those obtained with the Hubbard-type models with
contact interaction between the electrons [9–11]. Further
work is needed to find relations between these models.

5 Conclusions

We have studied the magnetization and thermodynamic
properties of quasi-one-dimensional quantum rings using
a model Hamiltonian previously shown to describe excel-
lently the exact many-body spectra. The properties of the
rings are governed by the symmetry of the quantum me-
chanical system, leading to periodic properties as a func-
tion of the magnetic flux. The spin of the ground state has
fluctuations obtained earlier using exact diagonalization
techniques. Similarly the observed magic angular momen-
tum states which are seen as minima in the yrast line are
a natural consequence of the model Hamiltonian.

The temperature dependence of the pair correlation
shows that the correlation disappears at low temperatures,
corresponding an energy much lower than the lowest elec-
tronic excitation of the ring.

A comparison to noninteracting electrons in a narrow
ring shows a fundamental similarity which arises of the ro-
tational symmetry and one-dimensionality of the system.
The strongly correlated localized electrons result similar
phase diagram (spin versus magnetic field) to that of non-
interacting electrons.
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